FANUC
Canvas Category Machinery : Industrial Robot : General
FANUC has consistently pursued the automation of factories since 1956, when it succeeded in the development of the SERVO mechanism for the first time in the Japanese private sector. FANUC’s business is comprised of three pillars of FA, ROBOT and ROBOMACHINE. The FA business encompasses basic technologies, consisting of NCs (numerical controls), servos and lasers, which are also applied to the ROBOT and ROBOMACHINE businesses. In addition, FANUC’s flagship IoT product, “FIELD system,” which is an open platform, has been introduced as a new business. FANUC also offers services, with a policy for not terminating support of FANUC products as long as they are used by customers. Through such activities, FANUC contributes to the development of manufacturing industry in Japan and overseas, by promoting automation and efficiency in customers’ factories.
Assembly Line
FANUC’s New CRX-10iA/L Paint: World’s First Global Ex-Proof Collaborative Paint Robot
Global automation leader FANUC America unveils the new CRX-10iA/L Paint collaborative robot at Automate 2024. As the first explosion-proof collaborative paint robot for use and sale globally, FANUC’s CRX-10iA/L Paint cobot will unlock the benefits of automation for more companies in the painting, powder and/or gel coating with fiberglass reinforcement industries. The new FANUC cobot not only will help boost all types of paint operations including high-mix, low-volume applications, but also is designed to comply with the stringent explosion-proof safety standards required in the United States.
The CRX-10iA/L Paint cobot has a payload of 10 kg as well as the longest reach in its class at 1,418mm, allowing the cobot to access large workpieces in even the most difficult of places that can pose ergonomic challenges for humans to manually reach. Featuring the same smooth and rounded design of the CRX series, the CRX-10iA/L Paint cobot is lightweight at 45 kg and has a small footprint, which can be further enhanced by stacking the control unit onto a light and compact R-30iB Mini Plus controller. Along with the other CRX cobots, the CRX-10iA/L Paint is maintenance-free for 8 years adding to ownership savings and boosting operations.
Anyware Robotics’ Pixmo Takes Unique Approach to Trailer Unloading
While it’s likely true that there’s enough room for a whole bunch of different robotics companies in the trailer-unloading space, a given customer is probably going to only pick one, and they’re going to pick the one that offers the right combination of safety, capability, and cost. Anyware Robotics thinks they have that mix, aided by a box-handling solution that is both very clever and so obvious that I’m wondering why I didn’t think of it myself.
The overall design of Pixmo itself is fairly standard as far as trailer-unloading robots go, but some of the details are interesting. We’re told that Pixmo is the only trailer-unloading system that integrates a heavy-payload collaborative arm, actually a fairly new commercial arm from Fanuc. This means that Anyware Robotics doesn’t have to faff about with their own hardware, and also that their robot is arguably safer, being ISO-certified safe to work directly with people. The base is custom, but Anyware is contracting it out to a big robotics original equipment manufacturer.
That conveyor system in front of the boxes is an add-on that’s used in support of Pixmo. There are two benefits here: First, having the conveyor add-on aligned with the base of a box minimizes the amount of lifting that Pixmo has to do. This allows Pixmo to handle boxes of up to 65 pounds with a lift-and-slide technique, putting it at the top end of a trailer-unloading robot payload. And the second benefit is that the add-on system decreases the distance that Pixmo has to move the box to just about as small as it can possibly be, eliminating the need for the arm to rotate around to place a box on a conveyor next to or behind itself. Lowering this cycle time means that Pixmo can achieve a throughput of up to 1,000 boxes per hour—about one box every 4 seconds, which the Internet suggests is quite fast, even for a professional human.
Get it Done with Automated Tote Assembly
New Scale Robotics Brings Automated Gauging to FANUC America’s CRX Collaborative Robots
New Scale Robotics announces a new partnership with FANUC Americas as an Authorized Systems Integrator (ASI). This new relationship expands the FANUC system’s capabilities by enabling the automation of manual gauging processes, helping manufacturers eliminate bottlenecks and improve productivity. By automating tedious manual gauging tasks, New Scale’s Q-Span® systems improve measurement consistency, repeatability, and throughput while eliminating data entry errors. Working together, FANUC’s CRX robot with New Scale Robotics’ Q-Span system help high-mix, small-batch manufacturers to improve throughput, process control, and yield.
CRG Automation | Dual Robot, Dual Process Welding Cell
Fanuc and Volvo Cars sign deal to transform automotive manufacturing with sustainable robotics
Fanuc, the world’s leading manufacturer of industrial robots, has entered into a global contract with Volvo Cars, in a move to boost sustainability in the automotive manufacturing sector, according to Fanuc. The partnership outlines an extensive robot supply program, aimed at optimising production processes in Volvo’s manufacturing facilities worldwide. The collaboration further plays a crucial role in supporting Volvo’s ambitious sustainability goals.
Improving Quality and Consistency with Robotic Sanding
OSARO and FANUC America Collaborate to Enhance Capabilities of Robotic Warehouse Automation Solutions
OSARO®, a global leader in machine-learning-enabled robotics for e-commerce, is partnering with FANUC America, the leading supplier of CNCs, robotics and ROBOMACHINEs, to expand the capabilities of FANUC’s robotic automation solutions optimized for warehousing and e-commerce fulfillment. The two companies will collaborate on go-to-market strategies, commencing with the installation of an advanced piece-picking demonstration robot at FANUC’s Innovation Center in Rochester Hills, Michigan.
OSARO and FANUC America Collaborate to Enhance Capabilities of Robotic Warehouse Automation Solutions
OSARO®, a global leader in machine-learning-enabled robotics for e-commerce, is partnering with FANUC America, the leading supplier of CNCs, robotics and ROBOMACHINEs, to expand the capabilities of FANUC’s robotic automation solutions optimized for warehousing and e-commerce fulfillment. The two companies will collaborate on go-to-market strategies, commencing with the installation of an advanced piece-picking demonstration robot at FANUC’s Innovation Center in Rochester Hills, Michigan.
Micropsi Industries’ AI-Powered Robot Controller Is Now Hardware Agnostic
Micropsi Industries’ artificial intelligence-powered robot control software MIRAI, which helps automate complex tasks too difficult or costly to automate with traditional programming, will soon be accessible for all robot users. Previously compatible exclusively with Universal Robots and FANUC robots, MIRAI will be available for KUKA robots in early Q4, followed by other collaborative robots (cobots) and industrial robots as requested.
Using AI, MIRAI generates robot movements directly and in real time. Robot skills (or specific tasks) are trained, not programmed, in a few days through human demonstration, without users needing programming or AI knowledge. To start, the robot is repeatedly shown both a task and the environment with the help of a camera that is typically mounted on the robot’s wrist. The recorded movements are then transformed into a skill capable of handling variances and dynamic environmental conditions.
Our universal AI, the Covariant Brain, powering ABB and Fabuc robots simultaneously
Underfluid Hydromount Cell Courtesy of Arnold Machine
How Delta Robotics Optimize and Streamline Electronics Manufacturing Processes
Delta robots are relatively small robots employed in handling food items for packaging, pharmaceuticals for casing, and electronics for assembly. The robots’ precision and high speed make them ideally suited to these applications. Their parallel kinematics enables this fast and accurate motion while giving them a spiderlike appearance that’s quite different from that of articulated-arm robots. Delta robots are usually (though not always) ceiling mounted to tend moving assembly and packaging lines from above. They have a much smaller working volume than an articulated arm, and very limited ability to access confined spaces. That said, their stiffness and repeatability are assets in high-precision processing of delicate workpieces — including semiconductors being assembled.
Delta robots provide affordable and flexible automation for electronics manufacturing. They often provide higher speed and more flexibility than other robotics and automated pick-and-place machines.
Lights-Out 3D Printing
Labor shortages have forced manufacturers to adopt collaborative technology
Robotic screwdriving differs from more traditional applications, such as fixed or handheld screwdriving. Among other things, robots make it easy to do quick changeovers and run small, varying size batches of related assemblies. In addition, robots can drive screws from all directions without ergonomic concerns and with varying degrees of torque. They also have the ability to drive different sizes of screws using various feeders for each type of fastener. Manufacturers can achieve higher cycles per screwdriver spindle and faster cycle time per screw, while improving quality.
“[Automated] screwdriving used to be a task that was complex, costly and took up a large footprint on the assembly line,” explains Leclerc. “As such, it was reserved for use in vast plants with big automation budgets producing in high volumes. “There are screwdriving systems that can be bought off the shelf, shipped within a few business days, easily installed and adapted to production changes,” claims Leclerc. “It’s a completely new era.”
Precision Parts Manufacturer Dramatically Increases Uptime with FANUC’s IoT Solution
Fast, Easy Six-Axis Robot Integration Created by a Molder for Molders
For Scott and his staff, few tools are more critical to profitability and efficiency than automation, which is why Noble Plastics has Fanuc six-axis robots on all its injection machines. The integration was performed inhouse with the philosophy that, as Rogers puts it, “The robot should be a partner for the operator, not a hindrance.” After 20-plus years of robot integration experience and eight years as an authorized integrator for Fanuc robots, Noble Plastics is now launching a turnkey package of a robot, basic and intuitive user interface, end-of-arm tooling (EOAT)—if desired, integration with the injection machine controls, job-specific programming and operator training. “We can do all this faster and at lower cost than your average integrator,” Rogers says, “and the end result is easier for the operator to use.”
Systems can be delivered in as little as 2 to 4 weeks and commissioned in 1 to 2 days, vs. up to 4 to 6 months. All this adds up to what Rogers thinks is a unique set of capabilities to serve injection molding customers in need of highly flexible automation. Is six-axis an expensive solution? Not if you make good use of its capabilities, says Rogers. “Depending on how many shifts you run, it could be $2 to $5/hr. And there are some things you can do with a six-axis that you can’t do with human operators or any other kind of robot.”
Robotic solution for recycling | FANUC and Recycleye
New Machine Learning Tool for Predictive Maintenance
AI Servo Monitor, in conjunction with MT-LINKi through machine learning, analyzes the daily performance of machines equipped with FANUC CNCs. Daily data is displayed in intuitive graphs which allows users to easily monitor abnormalities on these machines. Artificial intelligence automatically creates a baseline model of the machine while running in a normal state. An “anomaly score” developed expresses a difference in the baseline model and the daily recorded values. On a web interface, users can easily see the anomaly scores in a graph. Plus, email notifications can be issued if this value exceeds the predefined thresholds.
The Power of Predictive Maintenance
“Getting to the level of predictive maintenance is an evolutionary process for manufacturers, regardless of their specialty,” notes Will Healy III, global business strategy manager at Balluff Inc. “Right now, there is great interest in retrofitting equipment with sensors to perform condition monitoring as a means to implement predictive maintenance. The next step is using equipment with integrated smart sensors and artificial intelligence. These technologies also enable prescriptive maintenance, which uses machine learning to help companies specifically adjust their operating conditions for desired production outcomes.”
One of the first robotic predictive maintenance applications of the IIoT occurred several years ago in the auto industry when General Motors teamed up with Cisco and FANUC America Corp. to launch a zero downtime program. Called ZDT, the predictive analytics service identifies potential failures so engineers and plant managers can schedule maintenance and repairs. This prevents unexpected breakdowns during production, thereby saving manufacturers time and money. According to Tuohy, the ZDT program has proven to be quite successful over the last several years. He says that about 30,000 robots worldwide are connected to the system.
Automate the Impossible: MIRAI-Powered FANUC Robots Master Cable Plugging
Inside or Outside?
According to ASSEMBLY magazine’s 26th annual capital equipment spending survey (December 2021), manufacturers, on average, meet 40 percent of their assembly system needs with equipment built in-house. Manufacturers that are able to build quality automation equipment in-house gain many benefits. Some of the main ones, according to Treter, include being able to fully protect intellectual property; maintaining the confidentiality of a new product or a proprietary assembly process; and using the team’s extensive product knowledge to modify or redesign equipment whenever necessary.
Automated Assembly for Waterproof Electrical Connectors, Courtesy of Noble Plastics
Machine Shop Creates Robot Machining Cell Before There was Work for It
This machine shop’s self-integrated robot was purchased without a project in mind. However, when a particular part order came in, the robot paired with the proper machine tool was an optimal fit for the job, offering consistency and an increase in throughput.
The M-10 is a six-axis robot that is designed specifically for small work cells and can lift up to 12 kg. Young purchased the robot with a force sensor, which he highly recommends. Force sensors enable robots to detect force and torque applied to the end effector. This provides it with an almost human sense of touch. Surprising to Young and his team, the force sensor was not difficult to set up and use.
After the robot purchase and the order came in, it was time to search for the right machine tool for the job. The Hardinge Bridgeport V480 APC VMC was attractive to Young because of its pallet changing system that maximizes spindle uptime.
Custom Tool’s automated data collection and reporting system developed by company president, Gillen Young, uses a web-based, Industrial Internet of Things (IIoT) platform to pull data from machines that have agents for the open-source MTConnect communication protocol as well as the company’s JobBoss enterprise resource planning (ERP) software. The platform is Devicewise for Factory from Telit, a company that offers IIoT modules, software and connectivity services and software.
Plug-and-Play Robot Ecosystems on the Rise
Robot ecosystems are bringing plug-and-play ease to compatible hardware and software peripherals, while adding greater value and functionality to robots. Some might argue that the first robot ecosystem was the network of robot integrators that has expanded over the last couple decades to support robot manufacturers and their customers. Robot integrators continue to be vital to robotics adoption and proliferation. Yet an interesting phenomenon began to take shape a few years ago with the growing popularity of collaborative robots and the industry’s focus on ease of use.
Campbell describes the typical process for engineering a new gripping solution for a robot: “You have to first engineer a mechanical interface, which may mean an adapter plate, and maybe some other additional hardware. If you’re an integrator, it must be documented, because everything you do as an integrator you have to document. You have to engineer the electrical interface, how you’re going to control it, what kind of I/O signals, what kind of sensors. And then you have to design some kind of software.
“When I talk to integrators, they say it’s typically 1 to 3 days’ worth of work just to put a simple gripper on a robot. What we’ve been able to do in the UR+ program is chip away at time and cost throughout the project.”
How Amazon's Middle Mile team helps packages make the journey to your doorstep
“To give you an idea of the scale and complexity we’re managing, our trucking network alone presents us with over 1088 — or ten octovigintillion — possible routing solutions,” says Tim Jacobs, director of Middle Mile Research Science and Optimization. “This is an especially large number, when you consider that there are 1082 atoms in the visible universe.”
And that’s just for the trucking network.
When a product is ordered on the Amazon Store, there are several ways it can make its way from a fulfillment center to the customer’s residence.
How Robotic Automation Impacts E-Commerce
AI and machine learning technologies are enabling new applications. In fact, most of the applications in ecommerce/fulfillment require some type of machine vision. However, with the huge proliferation of SKUs, the old way of programming for a particular part or object discretely is much more difficult to figure out what item to pick next. AI and machine learning will provide more opportunities for companies to expand their capabilities and help ease the burden of dealing with high levels of product variability.